
The Unison Manual

Roberto Castañeda Lozano

Contents

Introduction 3

I Using Unison 4

1 License, Contact, and Acknowledgments 5

2 Getting Started 7
2.1 Downloading . 7
2.2 Prerequisites . 7
2.3 Building . 8
2.4 Testing . 8
2.5 Installing . 8
2.6 Running . 8

3 LLVM Integration 12
3.1 Downloading . 14
3.2 Prerequisites . 14
3.3 Building, Testing, and Installing . 14
3.4 Running with llc . 14
3.5 Running with clang . 15

II Developing and Extending Unison 16

4 Architecture 17

5 Unison IR 19
5.1 Initial Unison IR . 19
5.2 Linearized Unison IR . 21
5.3 Extended Unison IR . 23
5.4 Augmented Unison IR . 24

1

6 Combinatorial Model 26
6.1 Parameters . 26

6.1.1 Program . 26
6.1.2 Processor . 27
6.1.3 Objective . 29

6.2 Variables . 29
6.3 Constraints . 30

6.3.1 Register Allocation . 30
6.3.2 Instruction Scheduling . 32

6.4 Objective . 34

7 Target Description 35
7.1 Structure . 35
7.2 Register Array . 36
7.3 Resource Model . 36
7.4 Calling Conventions . 36
7.5 Target Generation . 36
7.6 Importing from LLVM . 37

A Further Reading 38

2

Introduction

You are reading the manual of Unison: a simple, flexible, and potentially optimal open-source
tool that performs integrated register allocation and instruction scheduling using constraint pro-
gramming.

Unison can be used as an alternative or as a complement to the algorithms applied by stan-
dard compilers such as GCC and LLVM. Unison is particularly easy to integrate with the latter as
a driver is already available (see Chapter 3 for details).

This manual is divided into two main parts: Part I (Chapters 1 to 3) is devoted to the use of
Unison, while Part II (Chapters 4 to 7) deals with its development and extension.

Chapter 1 discusses licensing aspects and provides contact information. Chapter 2 contains
instructions to download, build, install, and test Unison. Chapter 3 describes how to use the
LLVM driver.

Chapter 4 outlines the architecture of Unison. Chapter 5 describes the intermediate repre-
sentation (Unison IR). Chapter 6 formulates the combinatorial model that lies at the core of the
Unison approach. Chapter 7 provides information about how processors are described in Uni-
son.

Appendix A provides references for further reading and other sources of documentation.

3

http://unison-code.github.io/
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/Constraint_programming
https://en.wikipedia.org/wiki/Constraint_programming
https://gcc.gnu.org/
http://llvm.org/

Part I

Using Unison

4

Chapter 1

License, Contact, and Acknowledgments

Unison is developed at the Swedish Institute of Computer Science in collaboration with KTH
Royal Institute of Technology in Stockholm, Sweden.

Unison and the Unison Driver for LLVM are released under the BSD3 open-source license:

Copyright (c) 2016, RISE SICS AB
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Unison includes code from the following projects:

• Graphalyze (in some graph algorithms of the unison package). The code is licensed under
BSD2.

5

https://www.sics.se/
https://www.kth.se/en
https://www.kth.se/en
https://hackage.haskell.org/package/Graphalyze
https://hackage.haskell.org/package/Graphalyze/src/LICENSE

• JsonCpp (used by the presolver and solver to parse their input). The code is licensed under
MIT.

• Erik Ekström’s master’s thesis (in parts of the presolver). The code is licensed under BSD3
but the copyright is held by Erik Ekström.

• Mikael Almgren’s master’s thesis (in parts of the presolver). The code is licensed under BSD3
but the copyright is held by Mikael Almgren.

The Unison Driver is built on top of the LLVM Compiler Infrastructure which is licensed under
the University of Illinois/NCSA Open Source License, see the LLVM website for details.

Furthermore, Unison makes extensive use of other open-source components, including:

• Gecode

• Qt

• Graphviz

• Haskell Platform

• Various Haskell packages (see the Build-Depends field in this and this package descrip-
tions)

For further license detail on these components, please check their websites.
Unison is designed, developed, and maintained by

• Roberto Castañeda Lozano (rcas@acm.org)

• Mats Carlsson (mats.carlsson@ri.se)

• Gabriel Hjort Blindell (ghb@kth.se)

• Christian Schulte (cschulte@kth.se)

Other people have also collaborated in the development of Unison:

• Özgür Akgün

• Mikael Almgren

• Noric Couderc

• Frej Drejhammar

• Erik Ekström

• Bevin Hansson

• Jan Tomljanović

• Kim-Anh Tran

6

https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp/blob/master/LICENSE
https://www.sics.se/%7ercas/teaching/ErikEkstrom_2015.pdf
https://www.sics.se/%7ercas/teaching/MikaelAlmgren_2015.pdf
http://llvm.org/
http://www.gecode.org/
https://www.qt.io/
http://www.graphviz.org/
https://www.haskell.org/platform/
https://github.com/unison-code/unison/blob/master/src/unison/unison.cabal
https://github.com/unison-code/unison/blob/master/src/unison-specsgen/unison-specsgen.cabal
mailto:rcas@acm.org
mailto:mats.carlsson@ri.se
mailto:ghb@kth.se
mailto:cschulte@kth.se

Chapter 2

Getting Started

Unison has to be built from source as we do not yet provide precompiled packages. The tool is
known to work on Linux and it might work on other platforms such as macOS and Windows as
all software dependencies claim to be portable across these.

Building, installing, and testing Unison in Linux is relatively straightforward. Just take the
following steps.

2.1 Downloading

Unison is hosted by GitHub. The easiest way to access its source code (including the history) is
by running:

git clone https://github.com/unison-code/unison.git

2.2 Prerequisites

Unison has the following direct dependencies:

• Stack

• Qt (version 5.x)

• Graphviz library

• Gecode (version 6.0.0)

To get the first three dependencies in Debian-based distributions, just run:

apt-get install haskell-stack qtbase5-dev libgraphviz-dev

7

https://github.com/unison-code/unison
http://www.haskellstack.org/
https://www.qt.io/
http://www.graphviz.org/
http://www.gecode.org/

Upgrade Slack after installing it:

stack upgrade

The source of Gecode can be fetched with:

wget https://github.com/Gecode/gecode/archive/release-6.0.0.tar.gz

2.3 Building

Just go to the src directory and run:

make build

2.4 Testing

Unison contains a test suite with a few functions where different targets and optimization goals
are exercised. To execute the tests just run:

make test

2.5 Installing

The building process generates three binaries. The installation process consists in copying the
binaries into the appropriate system directory. To install the binaries under the default directory
usr/local just run:

make install

The installation directory is specified by the Makefile variable PREFIX. To install the binaries
under an alternative directory $DIR just run:

make install PREFIX=$DIR

2.6 Running

This manual uses the iterative version of the factorial function as a running example. A possible
C implementation is as follows:

8

int factorial(int n) {
int f;
f = 1;
while(n > 0) {

f *= n--;
}
return f;

}

When used as a standalone tool, Unison takes as input a function in LLVM’s Machine IR for-
mat (MIR). In this format, instructions of a certain processor have already been selected. The
factorial function in MIR format with Hexagon V4 instructions looks as follows:

--- |
; ModuleID = (...)

...

name: factorial
body: |

bb.0.entry (freq 12):
liveins: %r0

%5 = COPY %r0
%6 = A2_tfrsi 1
%7 = C2_cmpgti %5, 0
J2_jumpf %7, %bb.2.while.end

bb.1.while.body (freq 255):

%0 = PHI %6, %bb.0.entry, %3, %bb.1.while.body
%1 = PHI %5, %bb.0.entry, %2, %bb.1.while.body
%2 = A2_addi %1, -1
%3 = M2_mpyi %1, %0
%8 = C2_cmpgti %1, 1
J2_jumpt %8, %bb.1.while.body
J2_jump %bb.2.while.end

bb.2.while.end (freq 12):
liveouts: %r0

%4 = PHI %6, %bb.0.entry, %3, %bb.1.while.body
%r0 = COPY %4
JMPret %r31

...

9

http://llvm.org/docs/MIRLangRef.html
http://llvm.org/docs/MIRLangRef.html
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor

To execute Unison on this function and obtain the optimal register allocation and instruction
schedule for Hexagon V4, just run the following command from the top of the Git repository:

uni run doc/code/factorial.mir --goal=speed

This command outputs a function in MIR format where registers are allocated and instruc-
tions are scheduled. The function is thus already very close to assembly code:

--- |
; ModuleID = (...)

...

name: factorial
body: |

bb.0 (freq 4):
successors: %bb.2(1), %bb.1(1)

BUNDLE {
%r1 = A2_tfrsi 1
J4_cmpgti_f_jumpnv_t %r0, 0, %bb.2, implicit %pc, implicit-def %pc

}

bb.1 (freq 85):
successors: %bb.1(1), %bb.2(1)

BUNDLE {
%r0 = A2_addi %r0, -1
%r1 = M2_mpyi %r0, %r1
%p0 = C2_cmpgti %r0, 1
J2_jumpt %p0, %bb.1, implicit %pc, implicit-def %pc

}

bb.2 (freq 4):

BUNDLE {
%r0 = A2_tfr %r1
JMPret %r31, implicit %pc, implicit-def %pc

}

...

The uni tool has several options and commands such as run. Detailed information about
each option and command can be obtained by running:

10

uni --help

Unison can be used as a standalone tool as illustrated above but is only really useful as a com-
plement to a full-fledged compiler. The next section gives instructions to use Unison together
with LLVM.

11

Chapter 3

LLVM Integration

Unison is accompanied with a driver that allows transparent integration with the LLVM compiler
infrastructure. In particular, the driver enables LLVM’s code generator (llc) to run Unison trans-
parently instead of its standard register allocation and instruction scheduling algorithms. Fig-
ure 3.1 shows how the LLVM driver interfaces with Unison to produce assembly code all the way
from source code. Arcs between components are labeled with the file extension corresponding
to the shared data file.

.c .ll .ll

.mir
.asm.mir

.unison.mir

.s
clang opt llc

unison

Figure 3.1: design of the LLVM driver

Unison uses LLVM’s Machine IR format (MIR) as the interface language. Unison takes as in-
put a function in MIR format (.mir) and the function where LLVM has already performed register
allocation and instruction scheduling (.asm.mir) as a starting point for the optimization algo-
rithm. For our running example, the starting solution factorial.asm.mir looks as follows:

12

http://llvm.org/docs/CommandGuide/llc.html
http://llvm.org/docs/MIRLangRef.html

--- |
; ModuleID = (...)

...

name: factorial
body: |

bb.0 (freq 12):
successors: %bb.2(1), %bb.1(1)

BUNDLE {
%r1 = A2_tfr %r0
%r0 = A2_tfrsi 1

}
BUNDLE {

%p0 = C2_cmpgti %r1, 0
J2_jumpfnew %p0, %bb.1, implicit %pc, implicit-def %pc

}

bb.1 (freq 255):
successors: %bb.1(1), %bb.2(1)

BUNDLE {
%r2 = A2_addi %r1, -1
%r0 = M2_mpyi %r1, %r0
%p0 = C2_cmpgti %r1, 1

}
BUNDLE {

%r1 = A2_tfr %r2
J2_jumpt %p0, %bb.1, implicit %pc, implicit-def %pc

}
J2_jump %bb.2, implicit-def %pc

bb.2 (freq 12):

JMPret %r31, implicit %pc, implicit-def %pc

...

The result of running Unison (.unison.mir) is sent back to llc where the final assembly
code is emitted.

As for the core Unison tool, the driver must be built from source as we do not yet provide
precompiled packages. The driver is known to work on Linux and should work in all other main
platforms provided that Unison itself can be built successfully.

13

3.1 Downloading

The Unison driver for LLVM is hosted as a LLVM form by GitHub. The easiest way to access its
source code (including the history) is by running:

git clone https://github.com/unison-code/llvm.git

LLVM 3.8 is the latest LLVM supported version. To access the driver for this version run the
following command on the cloned repository:

git checkout release_38-unison

3.2 Prerequisites

The LLVM driver depends on Unison being installed successfully. Check the LLVM website for
the prerequisites to build LLVM itself.

3.3 Building, Testing, and Installing

Just follow the instructions provided at LLVM’s website as usual.

3.4 Running with llc

To execute llc such that Unison is used for register allocation and instruction scheduling, just
run the following command from the top of the core Unison Git repository:

llc doc/code/factorial.ll -march=hexagon -mcpu=hexagonv4 -unison

Currently, Unison supports the following LLVM targets (defined bymarch-mcpu-mattr triples):

target -march= -mcpu= -mattr=

Hexagon V4 hexagon hexagonv4
ARM1156T2F-S arm arm1156t2f-s +thumb-mode
MIPS32 mips mips32

Other flags (with a -unison prefix) can be used to control the execution of Unison, run llc
�help for details.

14

https://github.com/unison-code/llvm
http://llvm.org/docs/GettingStarted.html#requirements
http://llvm.org/docs/GettingStarted.html#compiling-the-llvm-suite-source-code

3.5 Running with clang

To execute clang with Unison’s register allocation and instruction scheduling for Hexagon V4,
first build and install a matching clang version (see the Clang website for details). Then just run
the following command from the top of the core Unison Git repository:

clang doc/code/factorial.c -target hexagon -mllvm -unison

Alternatively, functions can be annotated with the"unison" attribute to indicate that Unison
should be run on them:

__attribute__((annotate("unison")))

15

http://clang.llvm.org/get_started.html

Part II

Developing and Extending Unison

16

Chapter 4

Architecture

As usual in compiler construction, Unison is organized as a chain of transformation components
through which the program flows. Each intermediate representation of the program is stored in
a file. Unison takes a mandatory and an optional file as input. The mandatory file is a function
in LLVM’s Machine IR format (.mir) where:

• instructions of a certain processor have already been selected,

• the code is in Static Single Assignment (SSA) form,

• instructions use and define temporaries (program variables at the code generation level)
rather than processor registers, and

• instructions are not yet scheduled.

The optional file (.asm.mir) is also in Machine IR format and represents the same function
where register allocation and instruction scheduling has already been applied by an external tool
(typically llc). This file contains as a structured representation of assembly code that Unison
can take as a starting solution within the optimization process. Unison generates as output a
single function (.unison.mir) with the given function after register allocation and instruction
scheduling. If Unison cannot improve the initial solution provided in the .asm.mir file, this is
just shown as output.

Figure 4.1 shows the main components involved in compilation of intermediate (.mir) code
to assembly (.unison.mir) code. Arcs between components are labeled with the file extension
corresponding to the shared data file. The Unison components are enclosed by a dashed rectan-
gle.

17

http://llvm.org/docs/MIRLangRef.html
https://en.wikipedia.org/wiki/Static_single_assignment_form

.mir

.uni .lssa.uni .ext.uni .alt.uni

.asm.mir

.json .ext.json .out.json
.unison.mir

uni
import

uni
linearize

uni
extend

uni
augment

uni
model

gecode-
presolver

gecode-
solver

uni
export

Figure 4.1: main components and boundaries of Unison

The function of each component is:

uni import: transform the instruction-selected program into Unison IR;

uni linearize: transform the program to Linear Static Single Assignment form;

uni extend: extend the program with copies;

uni augment: augment the program with alternative temporaries;

uni model: formulate a combinatorial problem combining global register allocation and in-
struction scheduling;

gecode-presolver: produce an equivalent combinatorial problem that is easier to solve;

gecode-solver: solve the combinatorial problem;

uni export: generate the almost-assembly program with the solution to the combinatorial prob-
lem.

Chapter 5 gives further detail on the Unison IR (.uni) and the different transformations that
are applied to it.

18

Chapter 5

Unison IR

The intermediate representation (IR) used in Unison is simply referred to as Unison IR. Unison IR
is a low-level, control-flow graph-based IR (just like LLVM’s Machine IR) that exposes the struc-
ture of the program and the multiple register allocation and instruction scheduling decisions to
be formulated in the combinatorial model. Unison IR has the following distinguishing features:

linear static single assignment form (LSSA) LSSA is a program form in which temporaries (pro-
gram variables at Unison IR’s level) are local to basic blocks (blocks for short) and relations
across temporaries from different blocks are made explicit.

optional copies Unison IR includes optional copy operations that can be deactivated or imple-
mented by alternative instructions.

alternative temporaries Unison IR allows operations to use alternative temporaries that hold
the same value.

Unison IR as required for the combinatorial model formulation is constructed incrementally
in four transformations as shown in Figure 4.1. This section introduces the elements of Unison
IR progressively by following the transformation chain for the running example.

5.1 Initial Unison IR

The initial Unison IR (.uni) after running the uni import component has a very similar struc-
ture to the input MIR function (.mir). This is how factorial.uni looks like:

19

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Basic_block

function: factorial
b0 (entry, freq: 4):

o0: [t0:r0,t1:r31] <- (in) []
o1: [t2] <- A2_tfrsi [1]
o2: [t3] <- C2_cmpgti [t0,0]
o3: [] <- J2_jumpf [t3,b2]
o4: [] <- (out) []

b1 (freq: 85):
o5: [] <- (in) []
o6: [t4] <- (phi) [t2,b0,t7,b1]
o7: [t5] <- (phi) [t0,b0,t6,b1]
o8: [t6] <- A2_addi [t5,-1]
o9: [t7] <- M2_mpyi [t5,t4]
o10: [t8] <- C2_cmpgti [t5,1]
o11: [] <- J2_jumpt [t8,b1]
o12: [] <- (out) []

b2 (exit, return, freq: 4):
o13: [] <- (in) []
o14: [t9] <- (phi) [t2,b0,t7,b1]
o15: [] <- JMPret [t1]
o16: [] <- (out) [t9:r0]

adjacent:
rematerializable:
fixed-frame:
frame:
stack-pointer-offset: 0
stack-arg-size: 0
jump-table:
goal: speed
removed-freqs:
source:
; ModuleID = (...)

A Unison IR file consists of multiple sections:

function: name of the function.

code: actual code of the function (more details are given below).

adjacent: relations among temporaries from different blocks (more details are given in Sec-
tion 5.2).

fixed-frame: frame objects (such as arguments passed by the stack) with a fixed position.

frame: frame objects with a variable position.

stack-pointer-offset: offset to add to the positions of the frame objects in the stack frame.

20

https://en.wikipedia.org/wiki/Call_stack

jump-table: blocks to which jump tables in the code can jump.

goal: optimization goal for Unison (either speed or size).

source: source code from which the function originates (typically LLVM IR).

The code section consists of a list of blocks. Each block has some attributes (whether it is the
entry or exit point of the function, whether it returns to its caller function, and its estimated or
profiled execution frequency) and a list of operations. An operation consists of an identifier (for
example o8), a list of definition operands ([t6]), an instruction that implements the operation
(A2_addi), and a list of use operands ([t5, -1]). Definition operands are always temporaries
(t6); use operands can be temporaries (t5), block references (b2 in o3, or Machine IR operands
(-1 in o8) that are only passed through by Unison.

Some Unison IR operations are virtual, that is, they contribute to the definition of the func-
tion semantics but do not appear in Unison’s output. An example is the in and out delimiter
operations, which define (use) temporaries that are live-in (out) at the entry (exit) point of each
block. Another example is thephioperations in blocksb1 andb2 (the initial Unison IR is in Static
Single Assignment (SSA) form). A phi operation (for example o14) at the beginning of a block de-
fines a temporary with the value of different temporaries depending on the preceding block that
is executed (for example t9 is set to the value of t2 if b0 is the preceding block or t7 if b1 is the
preceding block).

In the Unison IR, a preassignment of a temporary t to a register r at a certain point is repre-
sented by t:r. For example, the calling convention in Hexagon dictates that the first argument
of a function is passed in register r0, which is modeled by the definition operands t0:r0 in the
(in) delimiter of the entry block b0.

5.2 Linearized Unison IR

The linearized Unison IR (.lssa.uni) after running theuni linearize component is in Linear
Static Single Assignment (LSSA) form. This is how factorial.lssa.uni looks like:

21

https://en.wikipedia.org/wiki/Branch_table
https://en.wikipedia.org/wiki/Live_variable_analysis
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/Static_single_assignment_form

function: factorial
b0 (entry, freq: 4):

o0: [t0:r0,t1:r31] <- (in) []
o1: [t2] <- A2_tfrsi [1]
o2: [t3] <- C2_cmpgti [t0,0]
o3: [] <- J2_jumpf [t3,b2]
o4: [] <- (out) [t0,t1,t2]

b1 (freq: 85):
o5: [t4,t5,t6] <- (in) []
o6: [t7] <- A2_addi [t5,-1]
o7: [t8] <- M2_mpyi [t5,t4]
o8: [t9] <- C2_cmpgti [t5,1]
o9: [] <- J2_jumpt [t9,b1]
o10: [] <- (out) [t6,t7,t8]

b2 (exit, return, freq: 4):
o11: [t10,t11] <- (in) []
o12: [] <- JMPret [t11]
o13: [] <- (out) [t10:r0]

adjacent:
t0 -> t5, t1 -> t6, t1 -> t11, t2 -> t4, t2 -> t10, t6 -> t6, t6 -> t11,
t7 -> t5, t8 -> t4, t8 -> t10

rematerializable:
fixed-frame:
frame:
stack-pointer-offset: 0
stack-arg-size: 0
jump-table:
goal: speed
removed-freqs:
source:
; ModuleID = (...)

The difference with the initial Unison IR is that each temporaryt (for examplet1 infactorial.uni)
is decomposed into one temporary per block where t is live (for example t1 in b0, t6 in b1, and
t11 in b2). The congruence among LSSA temporaries that originate from the same temporary
is kept in the adjacent section. The fact that a temporary t in a block is congruent to another
temporary t' in an immediate successor block is represented by t -> t' (for example t1 ->
t6 indicates that t1 in b0 is congruent to t6 in the immediate successor block b1).

In the linearized Unison IR, liveness information is made explicit by defining and using the de-
composed temporaries in (out) and (in) delimiter operations. In this form, (phi) operations
are no longer necessary as the information that they convey is captured by the new elements in
the IR. For example, the relation betweent9, t2, andt7 infactorial.uni is captured byt2 ->
t10 and t8 -> t10 in factorial.lssa.uni (t2, t7, and t9 in factorial.uni correspond
to t2, t8, and t10 in factorial.lssa.uni).

22

5.3 Extended Unison IR

The transformation performed by uni extend (.ext.uni) extends the IR with optional copy
operations that can be deactivated by the solver or used to support register allocation decisions
such as spilling and live-range splitting. This is how factorial.ext.uni looks like:

function: factorial
b0 (entry, freq: 4):

o0: [t0:r0,t1:r31] <- (in) []
o1: [t2] <- {-, MVW, STW} [t0]
o2: [t3] <- A2_tfrsi [1]
o3: [t4] <- {-, MVW, STW, STW_nv} [t3]
o4: [t5] <- {-, MVW, LDW} [t2]
o5: [t6] <- C2_cmpgti [t5,0]
o6: [t7] <- {-, MVW, LDW} [t2]
o7: [t8] <- {-, MVW, LDW} [t4]
o8: [] <- J2_jumpf [t6,b2]
o9: [] <- (out) [t7,t1,t8]

b1 (freq: 85):
o10: [t9,t10,t11] <- (in) []
o11: [t12] <- {-, MVW, STW} [t9]
o12: [t13] <- {-, MVW, STW} [t10]
o13: [t14] <- {-, MVW, LDW} [t13]
o14: [t15] <- A2_addi [t14,-1]
o15: [t16] <- {-, MVW, STW, STW_nv} [t15]
o16: [t17] <- {-, MVW, LDW} [t12]
o17: [t18] <- {-, MVW, LDW} [t13]
o18: [t19] <- M2_mpyi [t18,t17]
o19: [t20] <- {-, MVW, STW, STW_nv} [t19]
o20: [t21] <- {-, MVW, LDW} [t13]
o21: [t22] <- C2_cmpgti [t21,1]
o22: [t23] <- {-, MVW, LDW} [t16]
o23: [t24] <- {-, MVW, LDW} [t20]
o24: [] <- J2_jumpt [t22,b1]
o25: [] <- (out) [t11,t23,t24]

b2 (exit, return, freq: 4):
o26: [t25,t26] <- (in) []
o27: [t27] <- {-, MVW, STW} [t25]
o28: [t28] <- {-, MVW, LDW} [t27]
o29: [] <- JMPret [t26]
o30: [] <- (out) [t28:r0]

adjacent:
t1 -> t11, t1 -> t26, t7 -> t10, t8 -> t9, t8 -> t25, t11 -> t11,
t11 -> t26, t23 -> t10, t24 -> t9, t24 -> t25

rematerializable:
fixed-frame:
frame:
stack-pointer-offset: 0
stack-arg-size: 0
jump-table:
goal: speed
removed-freqs:
source:
; ModuleID = (...)

A copy operation can be discarded or implemented by alternative instructions. For example,

23

o15 can be deactivated if implemented by the special null instruction (-), or implemented by a
register-to-register move (MVW), a regular store (STW), or a zero-read-latency store (STW_nv). The
particular strategy to extend functions with copies is processor-specific (see Chapter 7), but it is
common to insert a copy including store instructions after each temporary definition and a copy
including load instructions after each temporary use. For example, o15 ando22 are inserted after
the definition and before a use oft25 andt23which correspond tot7 infactorial.lssa.uni.

5.4 Augmented Unison IR

The augmented IR (.alt.uni) allows operations to use alternative temporaries that hold the
same value. This is how factorial.alt.uni looks like:

function: factorial
b0 (entry, freq: 4):

o0: [p0{t0}:r0,p1{t1}:r31] <- (in) []
o1: [p3{-, t2}] <- {-, MVW, STW} [p2{-, t0}] (reads: [control])
o2: [p4{t3}] <- A2_tfrsi [1] (reads: [control])
o3: [p6{-, t4}] <- {-, MVW, STW, STW_nv} [p5{-, t3}] (reads: [control])
o4: [p8{-, t5}] <- {-, MVW, LDW} [p7{-, t0, t2}] (reads: [control])
o5: [p10{-, t6}] <- {-, C2_cmpgti} [p9{-, t0, t2, t5, t7},0] (reads: [control])
o6: [p12{-, t7}] <- {-, MVW, LDW} [p11{-, t0, t2}] (reads: [control])
o7: [p14{-, t8}] <- {-, MVW, LDW} [p13{-, t3, t4}] (reads: [control])
o8: [p16{-, t9}] <- {-, J2_jumpf_linear, J2_jumpf_nv_linear} [p15{-, t6}] (writes: [control])
o9: [p18{-, t10}] <- {-, J4_cmpgti_f_jumpnv_t_linear} [p17{-, t0, t2, t5, t7},0] (writes: [control])
o10: [] <- jump_merge [p19{t9, t10},b2] (writes: [control,pc])
o11: [] <- (out) [p20{t0, t2, t5, t7},p21{t1},p22{t3, t4, t8}]

b1 (freq: 85):
o12: [p23{t11},p24{t12},p25{t13}] <- (in) []
o13: [p27{-, t14}] <- {-, MVW, STW} [p26{-, t11}] (reads: [control])
o14: [p29{-, t15}] <- {-, MVW, STW} [p28{-, t12}] (reads: [control])
o15: [p31{-, t16}] <- {-, MVW, LDW} [p30{-, t12, t15}] (reads: [control])
o16: [p33{t17}] <- A2_addi [p32{t12, t15, t16, t20, t23},-1] (reads: [control])
o17: [p35{-, t18}] <- {-, MVW, STW, STW_nv} [p34{-, t17}] (reads: [control])
o18: [p37{-, t19}] <- {-, MVW, LDW} [p36{-, t11, t14}] (reads: [control])
o19: [p39{-, t20}] <- {-, MVW, LDW} [p38{-, t12, t15}] (reads: [control])
o20: [p42{t21}] <- M2_mpyi [p40{t12, t15, t16, t20, t23},p41{t11, t14, t19}] (reads: [control])
o21: [p44{-, t22}] <- {-, MVW, STW, STW_nv} [p43{-, t21}] (reads: [control])
o22: [p46{-, t23}] <- {-, MVW, LDW} [p45{-, t12, t15}] (reads: [control])
o23: [p48{-, t24}] <- {-, C2_cmpgti} [p47{-, t12, t15, t16, t20, t23},1] (reads: [control])
o24: [p50{-, t25}] <- {-, MVW, LDW} [p49{-, t17, t18}] (reads: [control])
o25: [p52{-, t26}] <- {-, MVW, LDW} [p51{-, t21, t22}] (reads: [control])
o26: [p54{-, t27}] <- {-, J2_jumpt_linear, J2_jumpt_nv_linear} [p53{-, t24}] (writes: [control])
o27: [p56{-, t28}] <- {-, J4_cmpgti_t_jumpnv_t_linear} [p55{-, t12, t15, t16, t20, t23},1] (writes: [control])
o28: [] <- jump_merge [p57{t27, t28},b1] (writes: [control,pc])
o29: [] <- (out) [p58{t13},p59{t17, t18, t25},p60{t21, t22, t26}]

b2 (exit, return, freq: 4):
o30: [p61{t29},p62{t30}] <- (in) []
o31: [p64{-, t31}] <- {-, MVW, STW} [p63{-, t29}] (reads: [control])
o32: [p66{-, t32}] <- {-, MVW, LDW} [p65{-, t29, t31}] (reads: [control])
o33: [] <- JMPret [p67{t30}] (reads: [r31], writes: [control,pc,pc])
o34: [] <- (out) [p68{t29, t31, t32}:r0]

adjacent:
p20 -> p24, p21 -> p25, p21 -> p62, p22 -> p23, p22 -> p61, p58 -> p25,
p58 -> p62, p59 -> p24, p60 -> p23, p60 -> p61

rematerializable:
fixed-frame:
frame:
stack-pointer-offset: 0
stack-arg-size: 0
jump-table:
goal: speed
removed-freqs:
source:
; ModuleID = (...)

The main change in the augmented Unison IR is the introduction of operand identifiers (for

24

example p47) and temporaries that can be connected to them (for example {-, t12, t15,
...}) where the special null connection (-) indicates that the operand is not connected to any
temporary because its operation is inactive.

Another difference is the annotation of operations with side effects. A side effect reads or
writes an abstract object (for example, control for control flow or pc for Hexagon’s program
counter). Multiple reads and writes to the same object cause dependencies among the operations
(for example, o2 must be issued before o8 provided the latter is active as o2 reads and o8 writes
the control object.

Finally, a Hexagon specific transformation is performed where an alternative way of imple-
menting compare-and-jump operations (o5 ando8; o21 ando24) is introduced (see the Hexagon
Programmer’s Reference Manual or the comments in LLVM’s HexagonNewValueJump.cpp file
for further detail).

25

Chapter 6

Combinatorial Model

This chapter formulates the combinatorial model of register allocation and instruction schedul-
ing that is at the core of Unison. The combinatorial model consists of parameters (Section 6.1) de-
scribing the input program, processor, and objective; variables (Section 6.2) capturing the differ-
ent decisions involved in register allocation and instruction scheduling; constraints (Section 6.3)
relating and limiting the decisions; and an objective function (Section 6.4) to optimize for. This
chapter provides a raw but formal description of the model, for further explanations please con-
sult [1].

6.1 Parameters

This section lists the parameters of the combinatorial model with examples fromfactorial.json
(see Figure 4.1).

6.1.1 Program

B , O , P, T sets of blocks, operations, operands and temporaries
B [0, 1, 2]
O [0, 1, 2, ..., 33, 34]
P [0, 1, 2, ..., 67, 68]
T [0, 1, 2, ..., 31, 32]

block (o) block to which operation o belongs
block [0, 0, ..., 1, 1, 1, 2, 2, 2, 2, 2]

operands (o) set of operands of operation o
operands [[0, 1], [2, 3], [4], ..., [65, 66], [67], [68]]

temps (p) set of temporaries that can be connected to operand p
temps [[0], [1], [-1, 0], ..., [30], [29, 31, 32]]

26

use (p) whether p is a use operand
use [false, false, true, ..., true, true]

p
=→ q whether operands p and q are adjacent

adjacent [[20, 24], [21, 25], ..., [60, 61]]

p .r whether operand p is preassigned to register r
preassign [[0, 0], [1, 31], [68, 0]]

width (t) number of register atoms that temporary t occupies
width [1, 1, 1, ..., 1, 1]

freq (b) estimated execution frequency of block b
freq [4, 85, 4]

min-live (t) minimum live duration of temporary t if it is live
minlive [1, 1, 1, ..., 1, 1]

dep (b) fixed dependency graph of the operations of block b
dep [[[0, 1], ..., [1, 8], ..., [10, 11]], [...], [...]]

prescheduled(o ,c) whether operation o is prescheduled to cycle c
preschedule [[2, 3], [1, 1], [60, 24]]

note: the example JSON array is extracted from a different program
(Hexagon programs do not yet yield prescheduling constraints)

out(b) out-delimiter of block b
out [11, 29, 34]

6.1.2 Processor

I , R sets of instructions and resources
I [0, 1, 2, 3, ..., 16]
R [0, 1, 2, 3, ..., 8]

dist (o1, o2,i) min. issue distance of ops. o1 and o2 when o1 is implemented by i
dist [[[1], ..., [0, 0, 0], ..., [1]], [...], [...]]

note: this parameter is encoded with the same structure as dep: each de-
pendency and its corresponding distance array are found in the same po-
sitions of their respective JSON arrays (example: dep[0][2] = [0, 3],
dist[0][2] = [1]).

class (o ,i, p) register class in which operation o implemented by i accesses p
class [[0, 0]], [[0, 0], [1, 1], [1, 9]], ..., [[0]]

atoms (r c) atoms of register class r c
atoms [[0, 1, 2, ..., 76], ..., [37, 39, 41, ..., 75]]

27

instrs (o) set of instructions that can implement operation o
instructions [[2], [0, 3, 4], [5], ..., [16], [2]]

lat (o ,i, p) latency of p when its operation o is implemented by i
lat [[[1, 1]], [[0, 0], [0, 1], [0, 1]], ..., [[0]]]

bypass (o ,i, p) whether p is bypassing when its operation o is implemented by i
bypass [[[false, false]], [[false, false], ..., [[false]]]

cap (r) capacity of processor resource r
cap [4, 4, 2, 1, 2, 1, 1, 2, 1]

con (i,r) consumption of processor resource r by instruction i
con [[0, 0, ..., 0, 0], ..., [1, 1, 0, 0, 1, 1, 0, 0, 0]]

dur (i,r) duration of usage of processor resource r by instruction i
dur [[0, 0, ..., 0, 0], ..., [1, 1, 0, 0, 1, 1, 0, 0, 0]]

off (i,r) offset of usage of processor resource r by instruction i
off [[0, 0, ..., 0, 0], ..., [0, 0, 0, 0, 0, 0, 0, 0, 0]]
aligned (p , i , q , j) whether operands p and q are aligned when implemented by instructions

i and j
aligned [[69, 17, 71, 17], [70, 24, 71, 24]]

note: the example JSON arrays are extracted from a different program
(Hexagon programs do not yield alignment constraints)

adist (p , i , q , j) alignment distance of operands p and q when implemented by instruc-
tions i and j

adist [0, 1, 1]
note: this parameter is encoded with the same structure as aligned:
each aligned operand tuple and its corresponding alignment distance are
found in the same positions of their respective JSON arrays (example:
aligned[1] = [70, 24, 71, 24], adist[1] = 1.)

packed (p , q) whether operands p and q are packed
packed [[13, 14], [34, 35], [54, 55]]

note: the example JSON arrays are extracted from a different program
(Hexagon programs do not yield packing constraints)

exrelated (p , q) whether operands p and q are related extensionally
exrelated [[4, 5]]

note: the example JSON arrays are extracted from a different program
(Hexagon programs do not yield extensional constraints)

table (p , q) table of register assignments for operands p and q
table [[0, 1],[2, 3],[4, 5],[6, 7]]

28

note: the example JSON arrays are extracted from a different program
(Hexagon programs do not yield extensional constraints)

activators (o) set of instructions that activate operation o
activators [[], [10, 17, 13, 19], [10, 17, 13, 19], ..., []]

note: the example JSON array is extracted from a different program
(Hexagon programs do not yet yield activation constraints)

CS caller-saved atoms
callersaved [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

28, 32, 33, 34, 35]

E set of ad hoc processor constraints
E [[2, [1, [5, 13], [5, 14]], [5, 15]], ...]

note: constraints are encoded as trees of expression tuples, where the first
element of each expression tuple encodes its type as follows:
0 or
1 and
2 xor
3 implies
4 not
5 active
6 connects
7 implements

8 distance
9 share
10 operand-overlap
11 temporary-overlap
12 caller-saved
13 allocated
14 aligned

note: the example JSON array is extracted from a different program
(Hexagon programs do not yet yield ad hoc constraints)

6.1.3 Objective

dynamic (n) whether to use block frequencies as weight for the n th objective
optimize_dynamic [true]

resource (n) resource whose consumption is to be optimized for the n th objective
optimize_resource [-1]

note: the estimated number of cycles (cycles) is encoded as resource -1 ,
otherwise the usual resource numbers in R are used

max-cost (n) upper bound of the n th objective
maxf [274]

6.2 Variables

29

ao ∈ {0, 1} whether operation o is active

io ∈ instrs (o) instruction that implements operation o

lt ∈ {0, 1} whether temporary t is live

rt ∈N0 register to which temporary t is assigned

xp ∈ {0, 1} whether operand p is connected

yp ∈ temps (p) temporary that is connected to operand p

co ∈N0 issue cycle of operation o relative to the beginning of its block

lst ∈N0 live start of temporary t

let ∈N0 live end of temporary t

sp ∈Z latency slack of global operand p

6.3 Constraints

6.3.1 Register Allocation

connected operands: operands cannot be connected to null temporaries.

xp ⇐⇒ yp 6=⊥ ∀p∈P (6.1)

example: xp5
⇐⇒ yp5

6=⊥

connected users: a temporary is live iff it is connected to a user.

lt ⇐⇒ ∃p∈users (t) : yp = t ∀t ∈T (6.2)

where
users (t) =

�

p ∈ P : use (p)∧ t ∈ temps (p)
	

(6.3)

example: lt 4
⇐⇒ ∃p∈

�

p13, p22

	

: yp = t 4

connected definers: a temporary is live iff it is connected to its definer.

lt ⇐⇒ xdefiner (t) ∀t ∈T (6.4)

where
definer (t) = p ∈ P :

�

¬use (p)∧ t ∈ temps (p)
�

(6.5)

example: lt 19
⇐⇒ xp37

local operand connections: local operands are connected iff their operations are active.

xp ⇐⇒ aoperation (p) ∀p∈P :¬global (p) (6.6)

30

where
global (p) ⇐⇒ ∃q∈P :

�

p
=→ q ∨q

=→ p
�

∀p∈P (6.7)

and
operation (p) = o ∈O : p ∈ operands (o) (6.8)

example: xp45
⇐⇒ ao22

global operand connections: global operands are connected iff any of their successors is con-
nected.

xp ⇐⇒ ∃q∈P :
�

p
=→ q ∧ xq

�

∀p∈P : global (p) (6.9)

example: xp21
⇐⇒ ∃q∈

�

p25, p62

	

: xq

active instructions: active operations are implemented by non-null instructions.

ao ⇐⇒ io 6=⊥ ∀o∈O (6.10)

example: ao15
⇐⇒ io15

6=⊥

register class: the instruction that implements an operation determines the register class to which
its operands are allocated.

ryp
∈ atoms (class (o , io , p)) ∀o∈O , ∀p∈operands (o) (6.11)

example: ryp 14
∈ class (o7, io7

, p14)

disjoint live ranges: temporaries whose live ranges overlap are assigned to different register atoms.

disjoint2 ({〈rt , rt +width (t)× lt , lst , let 〉:t ∈ T (b)}) ∀b ∈B (6.12)

where
T (b) = {t ∈ T : block (operation (definer (t))) = b } (6.13)

example: disjoint2 (
�

rt 0
, rt 0
+1× lt 0

, lst 0
, let 0

�

, . . . ,

rt 10
, rt 10

+1× lt 10
, lst 10

, let 10

�	

)

preassignment: certain operands are preassigned to registers.

ryp
= r ∀p∈P : p .r (6.14)

example: ryp 1
= r31

congruence: connected adjacent operands are assigned to the same register.

xp ∧ xq =⇒ ryp
= ryq

∀p , q∈P : p
=→ q (6.15)

example: xp21
∧ xp25

=⇒ ryp 21
= ryp 25

31

alignment: aligned operands are assigned to registers at a given relative distance.

ioperation (p) = i ∧ ioperation (q) = j =⇒ ryp
= ryq

+adist (p , i , q , j)

∀p , q∈P , ∀i , j ∈I : aligned (p , i , q , j)
(6.16)

packing: packed operands are assigned to contiguous, complementary registers.

xp ∧ xq =⇒ ryq
= ryp

+

¨

width (p) if ryp
mod

�

width (p)×2
�

= 0

−width (p) otherwise

∀p , q∈P : packed (p , q)

(6.17)

extensional: the registers assigned to some pairs of operands are related extensionally.

extensional (

p , q
�

, table (p , q)) ∀p , q∈P : exrelated (p , q) (6.18)

6.3.2 Instruction Scheduling

live start: the live range of a temporary starts at the issue cycle of its definer.

lt =⇒ lst = coperation (definer (t)) ∀t ∈T (6.19)

live end: the live range of a temporary ends with the last issue cycle of its users.

lt =⇒ let =max

 max
p∈users (t):

yp=t

coperation (p), lst +min-live (t)

 ∀t ∈T (6.20)

data precedences: an operation that uses a temporary must be preceded by its definer.

yq = t =⇒ cu ≥ cd + lat (d , id , p) + slack (p) + lat (u , iu , q) + slack (q)

∀t ∈ T ,

∀p ∈ {definer (t)} ,∀d ∈
�

operation (p)
	

∀q ∈ users (t),∀u ∈
�

operation (q)
	

(6.21)

where

slack (p) =

¨

sp if global (p)

0 otherwise
(6.22)

processor resources: the capacity of each processor resource cannot be exceeded at any issue
cycle.

cumulative ({〈co +off (io ,r),con (io ,r), dur (io ,r)〉 :o ∈O (b)} , cap (r))

∀b ∈B ,∀r∈R (6.23)

32

where
O (b) = {o ∈O : block (o) = b } (6.24)

fixed precedences: control and read-write dependencies yield fixed precedences among opera-
tions.

ad ∧au =⇒ cu ≥ cd +dist (d , u , id) ∀b ∈ B , ∀ (d , u) ∈ dep (b) (6.25)

activation: an operation is active if any of its activator instructions is selected.

∃o ′ ∈O : io ′ ∈ activators (o) =⇒ ao ∀o ∈O (6.26)

slack balancing: the slack of adjacent operands is balanced.

sp + sq = 0 ∀p , q∈P : p
=→ q (6.27)

prescheduling: certain operations are prescheduled before the last operation issue.

ao =⇒ co = c ∀o∈O : prescheduled(o ,c) (6.28)

and
ao ⇐⇒ c< cout (block (o)) ∀o∈O : prescheduled(o ,c) (6.29)

bypassing: the operation of a bypassing operand is scheduled in parallel with its definer.

bypass (o , io , p) =⇒ co = coperation (definer (yp)) ∀o∈O , ∀p∈operands (o) (6.30)

adhoc: ad hoc processor constraints are satisfied.

satisfy (e) ∀e ∈E (6.31)

33

where

satisfy (〈or, e1, e2, . . . , en 〉) ⇐⇒ satisfy (e1)∨ satisfy (e2)∨ . . .∨ satisfy (en)

satisfy (〈and, e1, e2, . . . , en 〉) ⇐⇒ satisfy (e1)∧ satisfy (e2)∧ . . .∧ satisfy (en)

satisfy (〈xor, e1, e2〉) ⇐⇒ satisfy (e1)⊕ satisfy (e2)

satisfy (

implies, e1, e2

�

) ⇐⇒ satisfy (e1) =⇒ satisfy (e2)

satisfy (〈not, e 〉) ⇐⇒ ¬satisfy (e)

satisfy (〈active, o 〉) ⇐⇒ ao

satisfy (

connects, p , t
�

) ⇐⇒ yp = t

satisfy (

implements, o ,i
�

) ⇐⇒ io = i

satisfy (〈distance, d , u , n〉) ⇐⇒ cu ≥ cd +n

satisfy (

share, p , q
�

) ⇐⇒ yp = yq

satisfy (

operand-overlap, p , q
�

) ⇐⇒ lsyp
< leyq

∧ lsyq
< leyp

satisfy (

temporary-overlap, t , t ′
�

) ⇐⇒ lst < let ′ ∧ lst ′ < let

satisfy (〈caller-saved, t 〉) ⇐⇒ rt ∈CS

satisfy (

allocated, p , r c
�

) ⇐⇒ ryp
∈ atoms (r c)

satisfy (

aligned, p , q , n
�

) ⇐⇒ ryq
= ryp

+n

6.4 Objective

The objective is to minimize the sum of the weighted costs of each block according to the first
objective (multi-objective optimization is not yet supported):

∑

b∈B

weight (b)× cost (b)

where weight (b) gives the weight of block b :

weight (b) =

¨

freq (b) if dynamic (0)

1 otherwise
(6.32)

and cost (b) gives the estimated cost of block b :

cost (b) =

¨

cout(b) if resource (0) = cycles
∑

o∈O (b) con (io , resource (0)) otherwise
(6.33)

To optimize for speed, dynamic (0) is set to true and resource (0) is set to the special resource
cycles. To optimize for code size, dynamic (0) is set to false and resource (0) is set to the pro-
cessor resource bits representing the bits with which instructions are encoded.

34

Chapter 7

Target Description

This chapter explains how target processors are described in Unison. Section 7.1 describes the
structure of the source code that implements a target processor description. Section 7.5 describes
how major parts of the Unison description can be generated from a higher-level description. Sec-
tion 7.6 explains how the higher-level description itself can be imported from LLVM.

7.1 Structure

The source code describing a new target is located under the directory src/Unison/Target
within the base directory of the Unison Haskell package (src/unison). At the highest level, a
processor description is a function that returns a parameterized data structure of typeTargetDescription
i r rc s, where i, r, rc, and s are the processor’s instruction, register, register class, and re-
source types. They are typically defined as enumeration types, but can consist of more com-
plex types if required by the target description. A processor is registered in Unison by simply
adding the target description to a list provided by the function unisonTargets in the module
Unison.Target.

The TargetDescription data structure consists of a collection of functions that Unison
uses to query about the properties of the processor. Detailed documentation about the processor
functions can be obtained by building the code documentation for the Unison package. To do
this, just go to the src directory and run:

make doc

The generated HTML documentation can be found under the .stack-work/dist directory
within the Unison package. The TargetDescription data type can be found in the module
Unison/Target/API.

Unison includes a minimal, compilable target (Minimal) that can be used as a template to
create new targets, see the module Unison.Target.Minimal in the Unison package. A simple
MIR version of our running example with Minimal instructions is included indoc/code/factorial.mir.

35

To execute Unison on this function and obtain the optimal register allocation and instruction
schedule for Minimal, run the following command from the top of the Git repository:

uni run doc/code/minimal.mir --goal=speed --target=Minimal

By default, Minimal is defined as a single-issue processor, but an arbitrary issue width N can
be specified using the following target option:

uni run doc/code/minimal.mir ... --targetoption=issue-width:N

The rest of this section explains the key abstractions used in the processor description and
how different parts of it can be generated automatically.

7.2 Register Array

7.3 Resource Model

7.4 Calling Conventions

7.5 Target Generation

Large parts of a Unison processor description can be generated from a high-level, YAML-based
description of the instruction set. The description consists of a list of instructions, where the
main attributes of each instruction (its identifier, operands, size, . . .) are defined. This is how the
description for Hexagon’s instruction A2_addi in the running example looks like:

- id: A2_addi
type: linear
operands:
- Rd: [register, def, IntRegs]
- Rs: [register, use, IntRegs]
- s16: bound

uses: [Rs, s16]
defines: [Rd]
size: 4
affects:
affected-by:
itinerary: ALU32_ADDI_tc_1_SLOT0123

The high-level YAML-based descriptions are transformed by Unison’s tool specsgen into ac-
tual Haskell code to be compiled together with the rest of the Unison project. To build specsgen,
go to the src directory and run:

36

https://en.wikipedia.org/wiki/YAML

make build-specsgen

To install it, just run:

make install-specsgen

specsgen takes as input a number of YAML files (.yaml) and generates a number of Haskell
files (.hs) in a given directory. Run specsgen �help for more details. Makefile recipes are de-
fined to run specsgen for each target supported by Unison, see the run-specsgen-* recipes in
src/Makefile.

7.6 Importing from LLVM

Most of the information required to describe a target in Unison is readily available at LLVM for
the most popular targets. LLVM uses a language called TableGen to describe targets. The Unison
driver for LLVM (see Chapter 3) includes an extension of LLVM’sllvm-tblgen tool that produces
a YAML file (processable by specsgen) with the attributes of all instructions in a LLVM target. To
produce a $TARGET.yaml file for a LLVM target $TARGET (where LLVM’s source code is placed in
$LLVM_DIR), run:

llvm-tblgen -unison $LLVM_DIR/lib/Target/$TARGET/$TARGET.td \
-I $LLVM_DIR/include -I $LLVM_DIR/lib/Target/$TARGET \
-o $TARGET.yaml

37

https://llvm.org/docs/TableGen/index.html

Appendix A

Further Reading

38

Bibliography

[1] Roberto Castañeda Lozano. Integrated Register Allocation and Instruction Scheduling with
Constraint Programming. Licentiate thesis. KTH Royal Institute of Technology, Sweden, 2014.

39

	Introduction
	I Using Unison
	License, Contact, and Acknowledgments
	Getting Started
	Downloading
	Prerequisites
	Building
	Testing
	Installing
	Running

	LLVM Integration
	Downloading
	Prerequisites
	Building, Testing, and Installing
	Running with llc
	Running with clang

	II Developing and Extending Unison
	Architecture
	Unison IR
	Initial Unison IR
	Linearized Unison IR
	Extended Unison IR
	Augmented Unison IR

	Combinatorial Model
	Parameters
	Program
	Processor
	Objective

	Variables
	Constraints
	Register Allocation
	Instruction Scheduling

	Objective

	Target Description
	Structure
	Register Array
	Resource Model
	Calling Conventions
	Target Generation
	Importing from LLVM

	Further Reading

